Stream HPC

OpenCL – the battle, part I

Part I: the Hardware-companies** and Operating Systems**

(Part II will be about programming languages and software-companies, part III about the gaming-industry)

OpenCL is the new, but already de-facto standard of stream-computing; but how it got there so fast is somewhat strange. A few years ago there were many companies and research-groups seeing the power of using the GPU, such as:

And the fight is really not over, since we are talking about a big shift in the super-computing industry. Just think of IBM BlueGene, which will lose lots of market to nVidia and AMD. Or Intel, who hasn’t acquired a GPU-creator as AMD did. Who had expected the market to change this rigorous? If we’re honest, we could have seen it coming (when looking at the turbulence around PhysX and Havok), but “normally” this new techniques would be introduced slowly.

The fight is about market-shares. For operating-systems, the user wants to have their movies encoded in 20 minutes just like their neighbour. For HPC-computing, since clusters can be updated for a far lower price than was possible with the old-fashioned way; here it is mostly between Linux HPC and windows HPC (which still has a very small market-share), but also database-engines which rely on high-performance hardware/software.
The most to gain is in the processor-market. The extremely large consumer-market is declining since 2004, since most users do not need more than a netbook and have bought a separate gaming-computer for the more demanding games. We don’t only see Intel and AMD anymore, but IBM’s powerful Cell- en Power-processors, very power-efficient ARM-processors, etc. Now OpenCL could make it more interesting to buy an average processor and a good graphics-card, Intel (and AMD) have no choice then to take the battle with nVidia.

Background: Why Apple made OpenCL

Short answer: pure frustration. All those different implementations would or get a share or fight for being named the standard; Apple wanted to bet on the right horse and therefore took the lead in creating an open standard. Money would be made by updating software and selling more hardware. For that reason Apple’s close partners Intel and nVidia were easily motivated to help developing the standard. Currently Apple’s only (public) reasons for giving away such an expensive and specialised project is publicity and to be ahead of the competition. Since it will not be a core-business of Apple, it does not need to stay in lead, but which companies do?

Acquisitions, acquisition, acquisitions

No time to lose for the big companies, so they must get the knowledge in-house as soon as possible. Below are some examples.

  • Microsoft: Interactive Supercomputing (22-Sept-2009): made Star-P, software which allowed users to perform scientific, engineering or analytical computation on array or matrix-based data to use parallel architectures such as multi-core workstations, multi-processor systems, distributed memory clusters or utility/cloud-based environments. This is completely in the field of OpenCL, which Microsoft needs to strengthen its products as Apple already did, such as SQL-server and Windows HPC.
  • nVidia: Ageia technologies (22-Febr-2008): made specialized PC-cards and software for calculating complicated physics in games. They made the first commercial product aiming at the masses (gamers). PhysX-code could by integrated in nVidia-drivers to be used with modern nVidia-GPUs.
  • AMD: ATI (24-juli-2006): graphics chip specialist. Although the price was too high, it saved AMD from being bought out by Intel and even stay ahead (if they had kept running).
  • Intel: Havok (17-Sept-2007): builds games-tools, such as a physics-engine. After Ageia was captured, the only good company out there to buy; AMD was too late, which spent all its money on ATI. Wind River (4-June-2009): a company providing embedded systems, development tools for embedded systems, middleware, and other types of software. Also read this interesting article. Cilk (31-July-2009): offers parallel extensions that are tightly tied into a compiler. RapidMind (19-Aug-2009): created a high-level language Sh, which had an OpenCL-backend. Intel has a lead in CPU-compilers, which it wants to broaden to multi-core- and GPU-compilers. Intel discovered it was in the group of “old fashioned compiler-builders” and had lots to learn in a short time.

If you know more acquisitions of interest, please let us know.

Winners

Apple, Intel and NVidia are the winners for 2009 and 2010. They have currently the most knowledge in house and have their marketing-machine running. NVidia has the best insight for new markets.

Microsoft and Game-developers are second; they took the first train by joining the OpenCL-consortium and taking it very serious. At the end of 2010 Microsoft will be at Apple’s level of expertise, so we will see then who has the best novelties. The game-developers, of which most already have experience with physics-calculations, all had a second chance when they had misjudged the Physics-engines. More on gaming in part III.

AMD is currently actually a big loser, since it does not seem to take it all seriously enough. But AMD can afford to be late, since OpenCL makes it easy to switch. We hope the best for AMD, since it has the technology of both CPU and GPU, and many years of experience in both fields. More on the competition between marketing-monster nVidia and silent AMD will be discussed in a blog-item, next week.

Another possible loser is Linux, which has lots to lose on HPC-market; OpenBSD-based Apple and Windows HPC can actually win market-share now. Expect most from hardware-manufacturers Intel, AMD and nVidia to give code to the community, but also from universities who do lots of research on the ever-flexible Linux. At the end it all depends on OpenCL-adaptation of (Linux-specific) programming-languages, which will be discussed in part II.

ARM is a member of the OpenCL-group but does not seem to invest in it; they seem to target another growing market: the low-power mobile devices. We will write on OpenCL and the mobile market later and why ARM currently can be relaxed about OpenCL.

We hope you have more insights in this new market; please contact us for more specific information and feel free to give your comments. Please stay tuned for part II and III, which will be released the next few weeks.